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The forward-backward semiclassical treatment of ensemble averaged quantities is combined with a discretized
path integral description of the Boltzmann operator describing the initial density. We present a practical
Monte Carlo methodology for calculating time-dependent expectation values and time correlation functions,
applicable to polyatomic systems.

I. Introduction

Semiclassical theory, in particular its time-dependent ver-
sion,1,2 offers an intuitive picture of quantum mechanics near
the classical limit. The semiclassical approximation arises
naturally as the smallp limit of the path integral in Feynman’s
formulation of quantum mechanics3,4 and, as such, contains no
ad hoc assumptions. Unlike its time-independent counterpart,
time-dependent semiclassical theory encounters no conceptual
difficulties in multidimensional systems exhibiting classically
chaotic dynamics. As shown in the pioneering work of Miller,5,6

the semiclassical propagator retains all fundamental features of
quantum mechanics in most regimes of chemical interest: it
preserves unitarity, uncertainty products and zero-point energy,
captures phase interference phenomena semiquantitatively, and
also allows (at least to some extent) tunneling. A number of
studies have shown that the semiclassical approximation can
offer a semiquantitative description of small molecule reaction
dynamics and that it is sufficiently accurate even in strongly
chaotic systems.7-9 Miller has shown10 that the semiclassical
expression for the survival amplitude or a time correlation
function can be cast in an initial value representation which
involves trajectories that are specified in terms of their initial
phase space values, thus avoiding solution of double-ended
boundary value problems, and several variants of this idea have
been suggested and applied with success.11-23 The major
obstacle that has in the past hindered routine use of semiclassical
methods in polyatomic simulations is the oscillatory character
of the integrand. As in the case of the real time path integral,
Monte Carlo methods suffer from the “sign problem” and
generally fail to converge, although filtering techniques have
proven quite successful in certain cases.24,25 Several excellent
articles and books have reviewed the foundations and recent
progress in this field.26,5,6,27,28

Forward-backward semiclassical dynamics (FBSD)
methods29-39 have emerged as a practical approach to the
quantum dynamics of polyatomic systems. The main appeal of
these methods is the joint treatment of the time evolution
operator and its adjoint (a structure common to all ensemble
averaged expressions) as asingleoperator whose dynamics are
approximated by the semiclassical method. This treatment results
in trajectories that are integrated along a forward-backward
time contour. As a result, the combined action integral is small,

implying that the forward-backward semiclassical propagator
is a smooth function of the integration variables and thus can
be handled successfully by Monte Carlo methods.

The present paper focuses on the forward-backward treat-
ment of expectation values and time correlation functions at
finite temperature. We work with a particular version of FBSD
that offers the additional advantage of allowing rigorous
elimination of the semiclassical prefactor.35,36 The absence of
a prefactor from these expressions leads to enormous compu-
tational savings, since its evaluation generally scales as the third
power of the number of degrees of freedom. While practical
for large scale simulation, FBSD is not as accurate as a full
semiclassical calculation. The combined treatment of the
dynamics along a forward-backward time contour excludes
combinations of different forward and backward paths that are
largely responsible for quantum interference.32 As a result, the
method is often accurate for short or intermediate times, and is
indeed very similar in spirit to the quasiclassical Wigner
method40,41which can also be viewed as the linearized limit of
a semiclassical treatment.42 In practice, extensive dephasing in
systems of many degrees of freedom leads naturally to deco-
herence, and FBSD (as well as the quasiclassical Wigner
method) can be essentially quantitative in such cases.35

Sampling of initial conditions for a classical trajectory requires
knowledge of a weight factor determined by the prescribed initial
condition. In the present version of FBSD,35,36this factor is given
by the matrix element of the initial density with respect to
coherent states.11 If the initial wave function corresponds to a
pure state of Gaussian form this matrix element can be evaluated
analytically. However, more general initial conditions require
a numerical treatment of the density. The most common situation
is that of a canonical ensemble where the initial condition
describes Boltzmann statistics. The most general and accurate
methodology for evaluating matrix elements of the Boltzmann
operator is the path integral formulation of quantum statistical
mechanics.3,4,43 In this paper we adopt the discretized path
integral to develop a Monte Carlo methodology for calculating
the coherent state matrix element entering the prefactor-free
FBSD expression for time correlation functions or expectation
values. A path integral treatment of the canonical density in
conjunction with the Wigner approximation has recently been
developed by Ciccotti et al.46

Section II describes the theoretical formulation and develops
a procedure that can be used in conjunction with a Metropolis† Part of the special issue “William H. Miller Festschrift”.
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random walk.44 Because the sampling factor arising from the
path integral treatment of the Boltzmann operator is not
normalized a priori, one has to find a way of evaluating its norm.
Fortunately, we are able to express the normalization integral
in terms of one additional integral which is easily evaluated by
a separate Monte Carlo procedure. Section III illustrates the
methodology with numerical calculations of the average position
and correlation functions in one-dimensional anharmonic sys-
tems. Finally, section IV concludes.

II. Theoretical Description

The goal is to calculate correlation functions of the type

whereHdyn is a Cartesian Hamiltonian generating the dynamics,
F(0) is the density operator of the initial ensemble, andA, B
are general operators. To keep the presentation simple we use
one-dimensional notation, noting that the multidimensional
generalization of the theory presented below is straightforward.
The FBSD formulation of Shao and Makri,35 expresses the
correlation function as

Regarding all three exponentials in this expression as the time
evolution operator for an appropriate Hamiltonian along a
forward-backward time contour and applying the semiclassical
approximation in the coherent state representation11 brings eq
2.2 to the form

Here the classical trajectories with initial conditionsxin, pin

experience a discontinuity at the end of the forward time
evolution and subsequently continue in the backward time
direction, reaching eventually the phase space pointxf, pf. The
prefactorD is the forward-backward Herman-Kluk determinant
given by the expression

and |g〉 are coherent states described by the wave functions

Shao and Makri have shown that eq 2.3 can also be written in
a prefactor-free form,

Here the trajectories follow the classical equations of motion
with the HamiltonianHdyn up to the timet, at which point the
coordinate and momentum jump by the values34

Note that the momentum jump amounts toone-half of that
dictated by Hamilton’s equations. At the same time the action
increments by the full amount prescribed by the generalized
forward-backward Hamiltonian,35,36,39

Subsequent evolution takes place in the negative time
direction and the integrand is evaluated when the time parameter
reaches zero once again, at which time the trajectory has reached
the phase space valuesxf, pf. The derivative with respect to the
parameterµ is evaluated by a two-point finite difference method.
Miller and co-workers have shown that eq 2.6 can also be cast
in a derivative-free form involving only initial values of the
classical trajectories.

Because the forward and backward trajectories join at the
time t almost continuously, this formulation of FBSD neglects
the quantum interference that arises from combinations of
distinct forward and backward classical paths. The neglect of
such interference terms may result in large error if eq 2.6 is
applied to highly anharmonic Hamiltonians. Numerical tests on
model one-dimensional systems with Gaussian initial conditions
have shown that the method generally produces semiquantitative
results for the first few periods of motion, while failing to
capture wave packet rephasing at later times.35 These observa-
tions are very similar to the findings of Sun et al.45 on the
behavior of a linearized semiclassical approximation of Miller
and co-workers,42 equivalent to the quasiclassical Wigner
method.40,41Since long-time phase coherence is often suppressed
when many degrees of freedom are involved, all these methods
may offer satisfactory accuracy for simulating the dynamics of
polyatomic systems and thus can be very valuable.

Since the semiclassical dynamics prescription is well posed,
the purpose of the present section is to develop a computational
framework for calculating the coherent state matrix element of
the density operator describing the initial state of the system.
Earlier papers by our group have focused on specific cases where
the initial density is given by a Gaussian function36 or by the
Boltzmann factor in its high-temperature limit.30 Here we focus
on initial conditions corresponding to Boltzmann statistics at
finite temperatures in anharmonic systems where the Gaussian
approximation does not apply, while the high-temperature
factorization is too crude. The initial density operator is given
by

whereZ is the partition function and, depending on the situation,

whereH0 is the kinetic energy operator, may be the Hamiltonian
generating the dynamics (i.e., the Born-Oppenheimer potential
surface that governs the motnion of the nuclei, as in the case of
vibrational spectroscopy) or that describing a different electronic
potential surface in which the system is prepared.

Feynman’s path integral formulation of quantum statistical
mechanics provides the only accurate, yet practical prescription
for calculating matrix elements of the Boltzmann operator for
systems described in terms of arbitrary Hamiltonians. To apply
it to the coherent state matrix element entering eq 2.6 we

C(t) ) Tr(F(0)AeiHdynt/pBe-iHdynt/p) (2.1)

C(t) ) -i
∂

∂µ
Tr(F(0)AeiHdynt/peiµBe-iHdynt/p)|µ)0 (2.2)

C(t) ) -i(2πp)-1 ∂

∂µ ∫ dxin ∫ dpin D(xin,pin) ×

exp( i
p

S(xin, pin))〈g(xin, pin)|F(0)A|g(xf,pf)〉| )0 (2.3)

D(xin, pin) )

2-1/2x ∂xf

∂xin
+

∂pf

∂pin
- 2ipγ

∂xf

∂pin
- 1

2ipγ
∂pf

∂xin
(2.4)

〈x|g(xin, pin)〉 )

(2γ
π )1/4

exp(-γ(x - xin)
2 + i

p
pin(x - xin)) (2.5)

C(t) ) -i(2πp)-1 ∂

∂µ ∫ dxin ∫ dpin exp( i
p

S(xin, pin)) ×
〈g(xin, pin)|F(0)A|g(xf, pf)〉|µ)0 (2.6)

δ pt ) 1
2

πµ
∂Bt

∂xt
, δxt ) -pµ

∂Bt

∂pt
(2.7)

δSt ) pµB(t) + ptδxt (2.8)

F0 ) e-âH

Z
(2.9)

H ) H0 + V
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partition the Boltzmann operator in a product ofn factors, i.e.,

and write

If the operatorA has a simple form, e.g., if it is given by a low
order polynomial in position or momentum, the last factor in
the above equation can be evaluated in closed form. We consider
this situation first in the specific cases of expectation values (A
) 1), position correlation functions (A ) x), or velocity
correlation functions (A ) p/m). In other cases the matrix
element involvingA may not be obtainable in closed form. It
is then necessary to evaluate this factor numerically, and this
procedure introduces an additional integration variable in eq
2.11. While requiring more work, this case also lends itself to
a robust numerical procedure presented in the last part of this
section.

(a) Expectation Values and Correlation Functions of
Linear Operators. Perhaps the simplest case arises in the
calculation of expectation values, whereA ) 1. Further, it is
often of interest to calculate position or velocity correlation
functions, which are obtained from eq 2.1 by settingA ) x or
A ) p/m, respectively. Using the well-known result for the
propagator of a free particle and performing the resulting
Gaussian integrals, one can obtain closed form expressions for
the factors involving coherent states. In the particular cases of
interest we find

Substitution of this expression in eq 2.11 brings the coherent
state matrix element of the initial density into the form

where

Noting that the remaining semiclassical integrand in eq 2.6
consists of a pure phase, we must extract a sampling function
solely from eq 2.15. Taking into consideration the fact that the
initial and final phase space coordinates of each trajectory differ
only by an infinitesimal amount determined by the magnitude
of the finite difference parameterµ, we construct a sampling
function R from the entire real valued part of the exponent in
eq 2.15, replacingxf, pf by xin, pin:

In terms of this, the correlation function (or expectation value)
is given by the expression

whereλ combines the constants entering eqs 2.6 and 2.15 along
with the normalization integral, i.e., the integral of the sampling
function with respect to all variables:

e-âH ) (e-∆âH)n, ∆â ≡ â
n

(2.10)

〈gxin,pin
|e-âH A|gxf,pf

〉 )

∫ dx1 ...∫ dxn〈gxin,pin
|e-∆âH0/2|x1〉e

-∆âV(x1)

〈x1|e-∆âH0|x2〉 ...e-∆âV(xn)〈xn|e-âH0/2A|gxf,pf
〉 (2.11)

〈xn|e-∆âH0/2|gxfpf
〉 ) (2γ

π )1/4 x m

m+p2∆âγ
×

exp{- m

m+p2∆âγ(γ(xn - xf)
2 + ∆â

4m
pf

2 - i
p

pf(xn - xf))}
(2.12)

〈xn|e-∆âH0/2x|gxfpf
〉 ) (2γ

π )1/4 ( m

m + p2∆âγ
)3/2[xn +

p2∆â
m (γxf + i

2p
pf)]exp{- m

m + p2∆âγ(γ(xn - xf)
2 +

∆â
4m

pf
2 - i

p
pf(xn - xf))} (2.13)

〈xn|e-∆âH0/2p|gxfpf
〉 ) (2γ

π )1/4 ( m

m + p2∆âγ)3/2
[pf +

2ipγ(xn - xf)] × exp{- m

m + p2∆âγ(γ(xn - xf)
2 + ∆â

4m
pf

2 -

i
p

pf(xn - xf))} (2.14)

〈gxin,pin
|e-âHA|gxf

,pf
〉 ) (2γ

π )1/2 m

m + p2∆âγ
×

( m

2πp2∆â)(n-1)/2∫ dx1 ...∫ dxn σ(xn, xf, pf) ×

exp{-
m

m + p2∆âγ
(γ(x1 - xin)

2 +
∆â

4m
(pin

2 + pf
2) +

i

p
pin (x1 - xin) + γ(xn - xf)

2 -
i

p
pf(xn - xf)) -

m

2p2∆â
∑
k)2

n

(xk - xk-1)
2 - ∆â ∑

k)1

n

V(xk)} (2.15)

σ(xn, xf, pf) )
1 if A ) 1

m

m + p2∆âγ
[xn + p2∆â

m (γxf + i
2p

pf)] if A ) x

m

m + p2∆âγ
[pf + 2ipγ(xn - xf)] if A ) p

(2.16)

R(xin, pin, x1, ...,xn) ) exp{-
m

m + p2∆âγ
(γ(x1 - xin)

2 +

γ(xn - xin)
2 +

∆â

2m
pin

2 ) -
m

2p2∆â
∑
k ) 2

n

(xk - xk-1)
2 -

∆â ∑
k)1

n

V(xk)} (2.17)

C(t) ) -iλ ∂

∂µ ∫ dxin ∫ dpin ∫ dx1 ...∫ dxn ×

exp( i
p

S(xin, pin))R(xin, pin, x1, ...,xn) × σ(xn, xf, pf) ×

exp{- m

m + p2∆âγ
i
p
[pin(x1 - xin) - pf(xn - xf)] -

m

m + p2∆âγ[∆â
4m

(pf
2 - pin

2 ) + γ(xn - xf)
2 - γ(xn - xin)

2]}
µ)0

(2.18)

λ ) (2πp)-1 (2γ
π )1/2 m

m + p2∆âγ
Z-1 ( m

2πp2∆â)(n-1)/2 ×

∫ dxin ∫ dpin ∫ dx1 ...∫ dxnR(xin, pin, x1, ...,xn) (2.19)
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Because the sampling function contains potential terms which
correspond in general to nonlinear functions, evaluation of its
integral by purely analytic manipulations is not possible. Below
we describe a procedure for obtaining that integral.

First, notice that the integrals with respect to the trajectory
initial conditions are of the Gaussian type and can be evaluated
analytically. This brings the normalization integral to the form

where

It is thus sufficient to calculate the normalization integral of
this function. To proceed, we note that the canonical partition
function at the same level of approximation (i.e., expressed as
a discretized path integral withn imaginary time slices) takes
the form

The partition function is now expressed in terms of the function
entering the normalization integral:

where

is a positive constant.
Usingf as the weight function, we sample the function exp[-

R(x1 - xn)2] in a Metropolis random walk. This procedure yields
the integral

where

is the desired integral. In terms of these, the partition function
takes the form

Finally, we find

Combining this relation with the remaining constants in eq 2.19
gives the overall prefactorλ in eq 2.18; the result is extremely
simple:

To summarize the procedure developed above, we calculate by
Monte Carlo the integralκ of the function exp[-R(x1 - xn)2]
using a sampling function proportional tof. The result is the
inverse of the overall prefactor in the FBSD expression for an
expectation value. The generalization to systems with many
degrees of freedom is straightforward.

(b) Correlation Functions of General Position Space
Operators. Next we consider the general case, where the
operatorA is sufficiently complex that evaluation of its matrix
element is not possible by analytic means. For example, the
dipole moment operator whose correlation function encodes
important spectroscopic information is often available in terms
of a complicated function or even in numerical form. Inserting
an additional complete set of position states, eq 2.11 becomes

which involves an additional integration with respect to the
auxiliary variablexn+1. Substituting the various factors we write
eq 2.30 in the form

Proceeding as before, we choose the sampling function

Following similar steps as in the previous subsection, we define

∫ dxin ∫ dpin ∫ dx1 ...∫ dxn R(xin, pin, x1, ...,xn) )

π m + p2∆âγ
xmγ∆â

∫ dx1 ...∫ dxnf (x1, ...,xn) (2.20)

f(x1, ...,xn) ) exp{-
mγ/2

m + p2∆âγ
(x1 - xn)

2 -

m

2p2∆â
∑
k)2

n

(xk - xk-1)
2 - ∆â ∑

k)1

n

V(xk)} (2.21)

Z ) Tre-âH ) ( m

2πp2∆â)n/2 ∫ dx1 ...∫ dxn ×

exp{-
m

2p2∆â
[∑
k)2

n

(xk - xk-1)
2 + (x1 - xn)

2] -

∆â ∑
k)1

n

V(xk)} (2.22)

Z ) ( m

2πp2∆â)n/2 ∫ dx1 ...∫ dxn f(x1, ...,xn) ×

exp[-R(x1 - xn)
2] (2.23)

R ≡ m

2πp2∆â
- mγ/2

m + p2∆âγ
(2.24)

κ ≡ ê-1 ∫ dx1 ...∫ dxn f(x1, ...,xn) exp[-R(x1 - xn)
2]

(2.25)

ê ) ∫ dx1 ...∫ dxn f(x1, ...,xn) (2.26)

Z ) ( m

2πp2∆â)n/2
ê κ (2.27)

Z-1 ∫ dxin ∫ dpin ∫ dx1 ...∫ dxn R(xin, pin, x1, ...,xn) )

π m + p2∆âγ
xm∆âγ ( m

2πp2∆âγ)n/2
κ

-1 (2.28)

λ ) k-1 (2.29)

〈gxin,pin
|e-âH A|gxf,pf

〉 )

∫ dx1 ...∫ dxn+1 〈gxin,pin
|e-∆âH0/2|x1〉e

-∆âV(x1) ×
〈x1|e-∆âH0|x2〉 ...e-∆âV(xn) 〈xn|e-âH0/2|xn+1〉 A(xn+1)〈xn+1|gxf,pf

〉
(2.30)

〈gxin,pin
|e-âH A|gxf,pf

〉 ) (2γ

π )1/2 x m

m + p2∆âγ
×

( m

2πp2∆â)(n-1)/2( m

πp2∆â)1/2∫ dx1 ...∫ dxn+1 ×

exp{-
m

m + p2∆âγ
(γ(x1 - xin)

2 +
∆â

4m
pin

2 +
i

p
pin(x1 -

xin)) - γ(xn+1 - xf)
2 +

i

p
pf(xn+1 - xf) -

m

2p2∆â
(∑

k)2

n+1

(xk -

xk-1)
2 + (xn+1 - xn)

2) - ∆â ∑
k)1

n

V(xk)} A(xn+1) (2.31)

R(xin, pin, x1, ...,xn+1) ) exp{-
m

m + p2∆âγ
(γ(x1 - xin)

2 +

∆â

4m
pin

2 ) - γ(xn+1 - xin)
2 -

m

2p2∆â
(∑
k)2

n+1

(xk - xk-1)
2 +

(xn+1 - xn)
2) - ∆â ∑

k)1

n

V(xk)} (2.32)
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the function

where

and its normalization integral

Once again, one can show that the partition function at the same
level of approximation becomes

whereκ is the Monte Carlo average of the exponential function
in the last equation with respect to the normalized distribution
ê-1 f(x1, ..., xn+1), i.e.,

Combining these results, the overall normalization factor for
the correlation function becomes

III. Numerical Tests

We test the methodology presented in section II by applying
it to calculate the position correlation functions in a model one-
dimensional system. The system is a nonlinear oscillator of the
form

with m ) 1, ω ) x2. As discussed in ref 35, the potential in
this system is very anharmonic, leading to nearly complete
dephasing of a pure state within a few oscillation periods. It
was found that even though the forward-backward treatment
of the dynamics is incapable of accounting for the coherence
effects that lead later to wave packet rephasing at zero
temperature, it captures the initial several oscillations semi-
quantitatively.

The same trend is observed at finite temperature. The
imaginary time path integral converged withpω∆â ≈ 0.5. The
FBSD results are compared to those obtained via a numerically
exact basis set representation of the correlation function and

also to results generated by a purely classical treatment,

wherext is the classical position of the system at the timet.
Figures 1-3 show the position correlation function in this

system at three different temperatures corresponding topωâ )
x2/10,x2 and 3x2, respectively. For reference, note that for
a molecular vibration ofω ) 300 cm-1 these temperatures
correspond to 3000, 300, and 100 K, respectively. The effects
of potential anharmonicity are seen as dephasing of the
correlation function, which becomes faster as the temperature
is increased. At the highest temperature displayed in Figure 1
the FBSD-path integral results are practically exact. At lower
temperatures the FBSD results are still very accurate during
the first few oscillation periods but tend to overestimate
somewhat the dephasing rate. Note that in all cases the overall
magnitude and oscillation frequency of the real and imaginary
parts of the correlation function obtained from the FBSD-path
integral calculation are in good agreement with the exact results.
By contrast, the purely classical calculation is accurate only at
very high temperature, and significant discrepancies from the
exact results are observed at intermediate and low temperatures.
As expected, the classical approximation cannot reproduce the
correct magnitude of the correlation function at low tempera-
tures, and the classical oscillation period is larger than that
predicted by the quantum mechanical calculation, a consequence

f(x1, ...,xn+1) ) exp{-
cγ

1 + c
(x1 - xn)

2 - ∆â ∑
k)1

n

V(xk) -

m

2p2∆â
( ∑
k ) 2

n+1

(xk - xk-1)
2 + (xn+1 - xn)

2)} (2.33)

R ≡ m

m + p2∆âγ

ê ) ∫ dx1 ...∫ dxn f(x1, ...,xn) (2.34)

· )

( m

2πp2∆â)(n-1)/2 m

πp2∆â
∫ dx1 ...∫ dxn+1 f(x1, ...,xn+1) ×

exp{- 2m2

p2∆â (2m + p2∆âγ)
(x1 - xn+1)

2} )

( m

2πp2∆â)(n-1)/2( m

πp2∆â)êκ (2.35)

κ ) ∫ dx1 ...∫ dxn+1 ê-1 f(x1, ...,xn+1) ×

exp{- 2m2

p2∆â (2m + p2∆âγ)
(x1 - xn+1)

2} (2.36)

x 2
1 + R

κ
-1 (2.37)

Hdyn ) p2

2m
+ 1

2
mω2x2 - 0.1x3 + 0.1x4

Figure 1. Real and imaginary parts of the position correlation function
for the quartic oscillator described in this section at a high temperature,
pωâ ) x2/10. Solid lines: exact quantum mechanical results.
Markers: FBSD-path integral results withN ) 1 and 10 000 Monte
Carlo points per integration variable. Dashed lines: classical results.

Ccl(t) )
∫ dx0 ∫ dp0 e-âH(x0,p0)x0xt

∫ dx0 ∫ dp0 e-âH(x0,p0)
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of the neglect of zero point energy in the classical treatment.
Even more importantly, the classical method can only yield real
valued results and thus fails to provide any information about
the imaginary part of the correlation function. The latter is as
sizable as the real part at low temperatures and plays an
important role in determining the shape of the absorption
spectrum. The FBSD methodology with a path integral treatment
of the Boltzmann factor does not suffer from the above artifacts
of the purely classical treatment and thus provides an accurate,
yet practical alternative to a full quantum calculation.

IV. Discussion

Classical molecular dynamics simulations offer a valuable
picture of the dynamics in polyatomic systems where quantum
mechanical treatment remains completely out of reach. By its
nature, the classical treatment of nuclear motion is limited to
systems where quantum effects are of minor importance. The
FBSD methodology combined with a path integral treatment
of the Boltzmann operator offers a relatively inexpensive way
of impoving the results of classical simulations by incorporating
some important quantum effects. As illustrated in the numerical
examples presented in section III, the methodology described
in this paper captures important effects arising from full
quantization of initial conditions: for example, by treating
correctly the zero point energy, it produces the correct amplitude
of correlation functions, including that of the imaginary part,
and the frequency of oscillation, at least for the first few periods
of motion. These features are extremely important at low
temperatures and/or when light particles are involved. Thus, the
present methodology provides a useful, yet practical extension
of the conventional molecular dynamics simulation method.

Quantum inteference effects resulting from distinct forward
and backward trajectories are neglected by FBSD. Such effects
can have dramatic consequences at moderately long times, but
usually are not very noticeable during the initial few periods.
Thus, FBSD is usually accurate at short times, and generally
tends to predict faster dephasing at longer times. Often the
presence of many degrees of freedom leads naturally to
sufficiently rapid decay of observables or correlation functions.
In such cases FBSD can be quantitatively accurate at all times.
Nevertheless, at least partial inclusion of quantum intereference
effects is very desirable. This is possible by lifting the continuity
restrictions imposed by the forward-backward treatment in one
or a few important degrees of freedom. Such methods have been
formulated and shown to cure the major shortcomings of FBSD
in cases where quantum interference is significant, but generally
at a much higher computational cost. Progress in this field has
been very rapid during the past decade, and improved versions
of forward-backward semiclassical dynamics are likely to
become practical in the near future.
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